
Package: twosamples (via r-universe)
September 8, 2024

Type Package

Title Fast Permutation Based Two Sample Tests

Version 2.0.1

Description Fast randomization based two sample tests. Testing the
hypothesis that two samples come from the same distribution
using randomization to create p-values. Included tests are:
Kolmogorov-Smirnov, Kuiper, Cramer-von Mises, Anderson-Darling,
Wasserstein, and DTS. The default test (two_sample) is based on
the DTS test statistic, as it is the most powerful, and thus
most useful to most users. The DTS test statistic builds on the
Wasserstein distance by using a weighting scheme like that of
Anderson-Darling. See the companion paper at <arXiv:2007.01360>
or <https://codowd.com/public/DTS.pdf> for details of that test
statistic, and non-standard uses of the package (parallel for
big N, weighted observations, one sample tests, etc). We also
include the permutation scheme to make test building simple for
others.

License GPL (>= 2)

Encoding UTF-8

LinkingTo cpp11

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://twosampletest.com, https://github.com/cdowd/twosamples

BugReports https://github.com/cdowd/twosamples/issues

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://cdowd.r-universe.dev

RemoteUrl https://github.com/cdowd/twosamples

RemoteRef HEAD

RemoteSha 6472636591b27977f5ba0af7f1012d910e32e018

1

https://arxiv.org/abs/2007.01360
https://codowd.com/public/DTS.pdf
https://twosampletest.com
https://github.com/cdowd/twosamples
https://github.com/cdowd/twosamples/issues

2 ad_test

Contents

ad_test . 2
combine.twosamples . 4
cvm_test . 5
ks_test . 7
kuiper_test . 9
permutation_test_builder . 11
plot.twosamples . 12
print.twosamples . 13
two_sample . 14
wass_test . 16

Index 19

ad_test Anderson-Darling Test

Description

A two-sample test based on the Anderson-Darling test statistic (ad_stat).

Usage

ad_test(a, b, nboots = 2000, p = default.p, keep.boots = T, keep.samples = F)

ad_stat(a, b, power = def_power)

Arguments

a a vector of numbers (or factors – see details)

b a vector of numbers

nboots Number of bootstrap iterations

p power to raise test stat to

keep.boots Should the bootstrap values be saved in the output?

keep.samples Should the samples be saved in the output?

power power to raise test stat to

Details

The AD test compares two ECDFs by looking at the weighted sum of the squared differences
between them – evaluated at each point in the joint sample. The weights are determined by the
variance of the joint ECDF at that point, which peaks in the middle of the joint distribution (see

ad_test 3

figure below). Formally – if E is the ECDF of sample 1, F is the ECDF of sample 2, and G is the
ECDF of the joint sample then

AD =
∑
x∈k

(
|E(x)− F (x)|√

2G(x)(1−G(x))/n

)p

where k is the joint sample. The test p-value is calculated by randomly resampling two samples
of the same size using the combined sample. Intuitively the AD test improves on the CVM test by
giving lower weight to noisy observations.

In the example plot below, we see the variance of the joint ECDF over the range of the data. It
clearly peaks in the middle of the joint sample.

In the example plot below, the AD statistic is the weighted sum of the heights of the vertical lines,
where weights are represented by the shading of the lines.

4 combine.twosamples

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power.

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• ad_test(): Permutation based two sample Anderson-Darling test

• ad_stat(): Permutation based two sample Anderson-Darling test

See Also

dts_test() for a more powerful test statistic. See cvm_test() for the predecessor to this test
statistic. See dts_test() for the natural successor to this test statistic.

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = ad_test(vec1,vec2)
out
summary(out)
plot(out)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
ad_test(vec1,vec2)

combine.twosamples Combine two objects of class twosamples

Description

This function combines two twosamples objects – concatenating bootstraps, recalculating pvalues,
etc. It only works if both objects were created with "keep.boots=T" This function is intended for one
main purposes: combining parallized null calculations and then plotting those combined outputs.

Usage

combine.twosamples(x, y, check.sample = T)

cvm_test 5

Arguments

x a twosamples object
y a different twosamples object from the same *_test function run on the same

data
check.sample check that the samples saved in each object are the same? (can be slow)

Value

a twosamples object that correctly re-calculates the p-value and determines all the other attributes

See Also

twosamples_class, plot.twosamples, dts_test

Examples

vec1 = rnorm(10)
vec2 = rnorm(10,1)
out1 = dts_test(vec1,vec2)
out2 = dts_test(vec1,vec2)
combined = combine.twosamples(out1,out2)
summary(out1)
summary(out2)
summary(combined)
plot(combined)

cvm_test Cramer-von Mises Test

Description

A two-sample test based on the Cramer-Von Mises test statistic (cvm_stat).

Usage

cvm_test(a, b, nboots = 2000, p = default.p, keep.boots = T, keep.samples = F)

cvm_stat(a, b, power = def_power)

Arguments

a a vector of numbers (or factors – see details)
b a vector of numbers
nboots Number of bootstrap iterations
p power to raise test stat to
keep.boots Should the bootstrap values be saved in the output?
keep.samples Should the samples be saved in the output?
power power to raise test stat to

6 cvm_test

Details

The CVM test compares two ECDFs by looking at the sum of the squared differences between them
– evaluated at each point in the joint sample. Formally – if E is the ECDF of sample 1 and F is the
ECDF of sample 2, then

CVM =
∑
x∈k

|E(x)− F (x)|p

where k is the joint sample. The test p-value is calculated by randomly resampling two samples of
the same size using the combined sample. Intuitively the CVM test improves on KS by using the
full joint sample, rather than just the maximum distance – this gives it greater power against shifts
in higher moments, like variance changes.

In the example plot below, the CVM statistic is the sum of the heights of the vertical black lines.

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power.

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• cvm_test(): Permutation based two sample Cramer-Von Mises test

• cvm_stat(): Permutation based two sample Cramer-Von Mises test

See Also

dts_test() for a more powerful test statistic. See ks_test() or kuiper_test() for the predeces-
sors to this test statistic. See wass_test() and ad_test() for the successors to this test statistic.

ks_test 7

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = cvm_test(vec1,vec2)
out
summary(out)
plot(out)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
cvm_test(vec1,vec2)

ks_test Kolmogorov-Smirnov Test

Description

A two-sample test using the Kolmogorov-Smirnov test statistic (ks_stat).

Usage

ks_test(a, b, nboots = 2000, p = default.p, keep.boots = T, keep.samples = F)

ks_stat(a, b, power = def_power)

Arguments

a a vector of numbers (or factors – see details)

b a vector of numbers

nboots Number of bootstrap iterations

p power to raise test stat to

keep.boots Should the bootstrap values be saved in the output?

keep.samples Should the samples be saved in the output?

power power to raise test stat to

Details

The KS test compares two ECDFs by looking at the maximum difference between them. Formally
– if E is the ECDF of sample 1 and F is the ECDF of sample 2, then

KS = max|E(x)− F (x)|p

for values of x in the joint sample. The test p-value is calculated by randomly resampling two
samples of the same size using the combined sample.

8 ks_test

In the example plot below, the KS statistic is the height of the vertical black line.

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power.

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• ks_test(): Permutation based two sample Kolmogorov-Smirnov test
• ks_stat(): Permutation based two sample Kolmogorov-Smirnov test

See Also

dts_test() for a more powerful test statistic. See kuiper_test() or cvm_test() for the natural
successors to this test statistic.

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = ks_test(vec1,vec2)
out
summary(out)
plot(out)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
ks_test(vec1,vec2)

kuiper_test 9

kuiper_test Kuiper Test

Description

A two-sample test based on the Kuiper test statistic (kuiper_stat).

Usage

kuiper_test(
a,
b,
nboots = 2000,
p = default.p,
keep.boots = T,
keep.samples = F

)

kuiper_stat(a, b, power = def_power)

Arguments

a a vector of numbers (or factors – see details)

b a vector of numbers

nboots Number of bootstrap iterations

p power to raise test stat to

keep.boots Should the bootstrap values be saved in the output?

keep.samples Should the samples be saved in the output?

power power to raise test stat to

Details

The Kuiper test compares two ECDFs by looking at the maximum positive and negative difference
between them. Formally – if E is the ECDF of sample 1 and F is the ECDF of sample 2, then

KUIPER = |maxxE(x)− F (x)|p + |maxxF (x)− E(x)|p

. The test p-value is calculated by randomly resampling two samples of the same size using the
combined sample.

In the example plot below, the Kuiper statistic is the sum of the heights of the vertical black lines.

10 kuiper_test

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power.

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• kuiper_test(): Permutation based two sample Kuiper test
• kuiper_stat(): Permutation based two sample Kuiper test

See Also

dts_test() for a more powerful test statistic. See ks_test() for the predecessor to this test
statistic, and cvm_test() for its natural successor.

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = kuiper_test(vec1,vec2)
out
summary(out)
plot(out)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
kuiper_test(vec1,vec2)

permutation_test_builder 11

permutation_test_builder

Permutation Test Builder

Description

(Warning! This function has changed substantially between v1.2.0 and v2.0.0) This function takes
a two-sample test statistic and produces a function which performs randomization tests (sampling
with replacement) using that test stat. This is an internal function of the twosamples package.

Usage

permutation_test_builder(test_stat_function, default.p = 2)

Arguments

test_stat_function

a function of the joint vector and a label vector producing a positive number,
intended as the test-statistic to be used.

default.p This allows for some introduction of defaults and parameters. Typically used to
control the power functions raise something to.

Details

test_stat_function must be structured to take two vectors – the first a combined sample vector and
the second a logical vector indicating which sample each value came from, as well as a third and
fourth value. i.e. (fun = function(jointvec,labelvec,val1,val2) ...). See examples.

Conversion Function:
Test stat functions designed to work with the prior version of permutation_test_builder will
not work. E.g. If your test statistic is

mean_diff_stat = function(x,y,pow) abs(mean(x)-mean(y))^pow

then permutation_test_builder(mean_diff_stat,1) will no longer work as intended, but it
will if you run the below code first.

perm_stat_helper = function(stat_fn,def_power) {
output = function(joint,vec_labels,power=def_power,na) {
a = joint[vec_labels]
b = joint[!vec_labels]
stat_fn(a,b,power)

}
output

}

mean_diff_stat = perm_stat_helper(mean_diff_stat)

12 plot.twosamples

Value

This function returns a function which will perform permutation tests on given test stat.

Functions

• permutation_test_builder(): Takes a test statistic, returns a testing function.

See Also

two_sample()

Examples

mean_stat = function(joint,label,p,na) abs(mean(joint[label])-mean(joint[!label]))**p
myfun = twosamples:::permutation_test_builder(mean_stat,2.0)
set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = myfun(vec1,vec2)
out
summary(out)
plot(out)

plot.twosamples Default plots for twosamples objects

Description

Typically for now this will produce a histogram of the null distribution based on the bootstrapped
values, with a vertical line marking the value of the test statistic.

Usage

S3 method for class 'twosamples'
plot(x, plot_type = c("boots_hist"), nbins = 50, ...)

Arguments

x an object produced by one of the twosamples *_test functions

plot_type which plot to create? only current option is "boots_hist",

nbins how many bins (or breaks) in the histogram

... other parameters to be passed to plotting functions

Value

Produces a plot

print.twosamples 13

See Also

dts_test(), twosamples_class, combine.twosamples

Examples

out = dts_test(rnorm(10),rnorm(10,1))
plot(out)

print.twosamples twosamples_class

Description

Objects of Class twosamples are output by all of the *_test functions in the twosamples package.

Usage

S3 method for class 'twosamples'
print(x, ...)

S3 method for class 'twosamples'
summary(object, alpha = 0.05, ...)

Arguments

x twosamples object

... other parameters to be passed to print or summary functions

object twosamples-object to summarize

alpha Significance threshold for determining null rejection

Details

By default they consist of:a length 2 vector, the first item being the test statistic, the second the
p-value. That vector has the following attributes:

1. details: length 3 vector with the sample sizes for each sample and the number of bootstraps

2. test_type: a string describing the type of the test statistic

It may also have two more attributes, depending on options used when running the *_test function.
These are useful for plotting and combining test runs.

1. bootstraps: a vector containing all the bootstrapped null values

2. samples: a list containing both the samples that were tested

and by virtue of being a named length 2 vector of class "twosamples" it has the following two
attributes:

14 two_sample

1. names: c("Test Stat","P-Value")

2. class: "twosamples"

Multiple Twosamples objects made by the same *_test routine being run on the same data can be
combined (getting correct p-value and correct attributes) with the function combine_twosamples().

Value

• print.twosamples() returns nothing

• summarize.twosamples() returns nothing

Functions

• print(twosamples): Print method for objects of class twosamples

• summary(twosamples): Summary method for objects of class twosamples

See Also

plot.twosamples(), combine.twosamples()

two_sample DTS Test

Description

A two-sample test based on the DTS test statistic (dts_stat). This is the recommended two-sample
test in this package because of its power. The DTS statistic is the reweighted integral of the distance
between the two ECDFs.

Usage

dts_test(a, b, nboots = 2000, p = default.p, keep.boots = T, keep.samples = F)

two_sample(
a,
b,
nboots = 2000,
p = default.p,
keep.boots = T,
keep.samples = F

)

dts_stat(a, b, power = def_power)

two_sample 15

Arguments

a a vector of numbers (or factors – see details)
b a vector of numbers
nboots Number of bootstrap iterations
p power to raise test stat to
keep.boots Should the bootstrap values be saved in the output?
keep.samples Should the samples be saved in the output?
power also the power to raise the test stat to

Details

The DTS test compares two ECDFs by looking at the reweighted Wasserstein distance between the
two. See the companion paper at arXiv:2007.01360 or https://codowd.com/public/DTS.pdf
for details of this test statistic, and non-standard uses of the package (parallel for big N, weighted
observations, one sample tests, etc).

If the wass_test() extends cvm_test() to interval data, then dts_test() extends ad_test() to
interval data. Formally – if E is the ECDF of sample 1, F is the ECDF of sample 2, and G is the
ECDF of the combined sample, then

DTS =

∫
x∈R

(
|E(x)− F (x)|√

2G(x)(1−G(x))/n

)p

for all x. The test p-value is calculated by randomly resampling two samples of the same size
using the combined sample. Intuitively the DTS test improves on the AD test by allowing more
extreme observations to carry more weight. At a higher level – CVM/AD/KS/etc only require
ordinal data. DTS (and Wasserstein) gain power because they take advantages of the properties of
interval data – i.e. the distances have some meaning. However, DTS, like Anderson-Darling (AD)
also downweights noisier observations relative to Wass, thus (hopefully) giving it extra power.

In the example plot below, the DTS statistic is the shaded area between the ECDFs, weighted by
the variances – shown by the color of the shading.

https://arxiv.org/abs/2007.01360
https://codowd.com/public/DTS.pdf

16 wass_test

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power. The dts test
will assume the distance between adjacent factors is 1.

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• dts_test(): Permutation based two sample test

• two_sample(): Recommended two-sample test

• dts_stat(): Permutation based two sample test

See Also

wass_test(), ad_test() for the predecessors of this test statistic. arXiv:2007.01360 or https:
//codowd.com/public/DTS.pdf for details of this test statistic

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
dts_stat(vec1,vec2)
out = dts_test(vec1,vec2)
out
summary(out)
plot(out)
two_sample(vec1,vec2)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
dts_test(vec1,vec2)

wass_test Wasserstein Distance Test

Description

A two-sample test based on Wasserstein’s distance (wass_stat).

Usage

wass_test(a, b, nboots = 2000, p = default.p, keep.boots = T, keep.samples = F)

wass_stat(a, b, power = def_power)

https://arxiv.org/abs/2007.01360
https://codowd.com/public/DTS.pdf
https://codowd.com/public/DTS.pdf

wass_test 17

Arguments

a a vector of numbers (or factors – see details)

b a vector of numbers

nboots Number of bootstrap iterations

p power to raise test stat to

keep.boots Should the bootstrap values be saved in the output?

keep.samples Should the samples be saved in the output?

power power to raise test stat to

Details

The Wasserstein test compares two ECDFs by looking at the Wasserstein distance between the two.
This is of course the area between the two ECDFs. Formally – if E is the ECDF of sample 1 and F
is the ECDF of sample 2, then

WASS =

∫
x∈R

|E(x)− F (x)|p

across all x. The test p-value is calculated by randomly resampling two samples of the same size
using the combined sample. Intuitively the Wasserstein test improves on CVM by allowing more
extreme observations to carry more weight. At a higher level – CVM/AD/KS/etc only require
ordinal data. Wasserstein gains its power because it takes advantages of the properties of interval
data – i.e. the distances have some meaning.

In the example plot below, the Wasserstein statistic is the shaded area between the ECDFs.

Inputs a and b can also be vectors of ordered (or unordered) factors, so long as both have the same
levels and orderings. When possible, ordering factors will substantially increase power. wass_test
will assume the distance between adjacent factors is 1.

18 wass_test

Value

Output is a length 2 Vector with test stat and p-value in that order. That vector has 3 attributes – the
sample sizes of each sample, and the number of bootstraps performed for the pvalue.

Functions

• wass_test(): Permutation based two sample test using Wasserstein metric

• wass_stat(): Permutation based two sample test using Wasserstein metric

See Also

dts_test() for a more powerful test statistic. See cvm_test() for the predecessor to this test
statistic. See dts_test() for the natural successor of this test statistic.

Examples

set.seed(314159)
vec1 = rnorm(20)
vec2 = rnorm(20,0.5)
out = wass_test(vec1,vec2)
out
summary(out)
plot(out)

Example using ordered factors
vec1 = factor(LETTERS[1:5],levels = LETTERS,ordered = TRUE)
vec2 = factor(LETTERS[c(1,2,2,2,4)],levels = LETTERS, ordered=TRUE)
wass_test(vec1,vec2)

Index

ad_stat (ad_test), 2
ad_test, 2
ad_test(), 6, 15, 16

combine.twosamples, 4, 13
combine.twosamples(), 14
cvm_stat (cvm_test), 5
cvm_test, 5
cvm_test(), 4, 8, 10, 15, 18

dts_stat (two_sample), 14
dts_test, 5
dts_test (two_sample), 14
dts_test(), 4, 6, 8, 10, 13, 15, 18

ks_stat (ks_test), 7
ks_test, 7
ks_test(), 6, 10
kuiper_stat (kuiper_test), 9
kuiper_test, 9
kuiper_test(), 6, 8

permutation_test_builder, 11
plot.twosamples, 5, 12
plot.twosamples(), 14
print.twosamples, 13

summary.twosamples (print.twosamples),
13

two_sample, 14
two_sample(), 12
twosamples_class, 5, 13
twosamples_class (print.twosamples), 13

wass_stat (wass_test), 16
wass_test, 16
wass_test(), 6, 15, 16

19

	ad_test
	combine.twosamples
	cvm_test
	ks_test
	kuiper_test
	permutation_test_builder
	plot.twosamples
	print.twosamples
	two_sample
	wass_test
	Index

